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Abstract - In the event of an emergency, due to a fire or other 

crisis, a necessary but time consuming pre-requisite, that could 

delay the real rescue operation, is to establish whether the 

ground can be entered safely by human emergency workers. 

The objective of the VIEW-FINDER project is to develop 

robots which have the primary task of gathering data. The 

robots are equipped with sensors that detect the presence of 

chemicals and, in parallel, image data is collected and 

forwarded to an advanced base station 

One of the problems tackled in this project is the robot 

navigation. The used robot for the outdoor scenario is 

equipped with a set of sensors: camera, GPS, inertial 

navigation system (INS), wheel encoders, and ultrasounds 

sensors. The robot uses a Simultaneous Localization and 

Mapping (SLAM) approach to combine data from different 

sensors for an accurate positioning. The paper gives an 

overview on the proposed algorithm. 

 
Index Terms - View-Finder Project, Risky Intervention, Mobile 

Robots, Visual Simultaneous Localization and Mapping 

 

I. INTRODUCTION 
 

The objective of the View-Finder project is to develop and 

use advance robotics systems, equipped with a wide array of 

sensors and cameras, to explore a crisis ground in order to 

understand and reconstruct the investigated scene and thus 

to improve decision making. 

Using robotics in this type of scene needs to be with high 

precision. This contribution introduces the increase of 

mobile robot positioning accuracy using a SLAM approach. 

The SLAM algorithm uses data from a single monocular 

camera together with data from other sensors (Global 

Positioning System (GPS), Inertial Navigation System (INS) 

and wheel encoders) for robot localization in large-scale 

environments.  

The SLAM problem is tackled as a stochastic problem and it 

has been addressed with approaches based on Bayesian 

filtering [1-5]. The main problem of those approaches is that 

the computational complexity growth with the size of the 

mapped space, which limits their applicability in large-scale 

areas. In the case of vision based SLAM approaches, other 

challenges have to be tackled, as the high rate of the input 

data, the inherent 3D quality of visual data, the lack of direct 

depth measurement and the difficulty in extracting long-

term features to map.  

In this project we are concerned with robot navigation in 

large outdoor environments, for that we propose to build 

several size limited local maps and combine them into a 

global map using an 'history memory' which accumulates 

sensory evidence over time to identify places with a 

stochastic model of the correlation between map features. In 

our implementation, the dynamic model of the camera takes 

into account that the camera is on the top of a mobile robot 

which moves on a ground-plane. The SIFT algorithm [6] is 

used for features detection.  

The data from GPS, if available, are used to help localizing 

the robot and features in satellite images. While the data 

from the inertial sensor and the wheel encoders are 

introduced in the vehicle modeling. 

II. SYSTEM MODELING AND FEATURE 

EXTRACTION 

In our application, a camera is fixed on the top of a mobile 

car-like robot "ROBUDEM" (figure 1). The vehicle travels 

through the environment using its sensors to observe 

features around it. A world coordinate frame  is defined 

such that its  and  axes lie in the ground plane, and its  

axis point vertically upwards. 

 

 
 

Fig 1: The used robot in the VIEW-FINDER project. 

 

The system state vector of the stereo-camera  in this case 

is defined with the 3D position vector  of the 

head center in the world frame coordinates and the robot's 

orientations roll, pitch and yaw about the Z, X, and Y axes, 

respectively : 
 

 

 

The dynamic model or motion model is the relationship 

between the robot's previous state, , and its current 

state, , given a control input  
 

 (1) 
 

where  is a function representing the mobility, kinematics 

and dynamics of the robot (transition function) and  is a 

random vector describing the unmodelled aspects of the 

vehicle (process noise such as wheel sleep or odometry 

error). 

The system dynamic model in our case, considering the 

control  as identity, is given by:  
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 (2) 

 

 (measured by the wheels’ encoders) and  (measured by 

the inertial sensor) are the linear and the angular velocities, 

respectively.  and  are the Gaussian distributed 

perturbations to the camera's linear and angular velocity, 

respectively. 

Usually the features used in vision-based localization 

algorithms are salient and distinctive objects detected from 

images. Typical features might include regions, edges, 

object contours, corners etc. In our work, the map features 

are obtained using the SIFT feature detector [6], which maps 

an image data into scale-invariant coordinates relative to 

local features (e.g for detected SIFT features in figure 2) . 

These features were contemplated to be highly distinctive 

and invariant to image scale and rotation. The work of 

Mikolajczyk and Schmid [7] proved that SIFT features 

remain stable to affine distortions, change of viewpoint, 

noise and change in illumination. 

 

 
 

Fig 2: Features detected using the SIFT algorithm 

 

To deal with the problem of SLAM in dynamic scenes with 

moving object we use an algorithm for motion segmentation 

[8] to remove the outliers features which are associated with 

moving objects. In other words, the detected features which 

correspond to the moving parts in the scene are not 

considered in the built map. For more security we use a 

bounding box around the moving objects (figure 3). Another 

margin of security is used; the newly detected features are 

not added directly to the map but they should be detected 

and matched in at least n consecutive frames (in our 

application n=5). 

 

 
 

Fig 3: Features detected in a scene with moving objects 

Features are represented in the system state vector by their 

3D location in the world coordinate system W: 
 

 
 

The observation model describes the physics and the error 

model of the robot's sensor.The observations are related to 

the system state according to: 
 

 (3) 
 

where  is the observation vector at time  and  is the 

observation model. The vector  is an observation at instant 

 of the 'th landmark location  relative to the robot's 

location . 

Making a measurement of a feature  consists of 

determining its position in the camera image. Using a 

perspective projection, the observation model in the robot 

coordinate system is obtained as follows: 
 

                                  (4) 

 

where  and  are the image center coordinates and  is 

the focal length of the camera. 

 

 are the coordinates of the 

feature  in the robot coordinate frame . They are related to 

 by: 
 

           (5) 

 

 is the high of the camera. 
 

The state of the system at time  can therefore be 

represented by the augmented state vector, , consisting of 

the  states representing the robot, , and the  states 

describing the observed landmarks, , . 

The robot position and therefor the features position are 

measured in the universal GPS coordinate system (west-

east, south-north) based on the GPS measurement, if 

existing. 

III. EXTENDED KALMAN FILTER FOR SLAM 

Given a model for the motion and observation, the SLAM 

process consists of generating the best estimate for the 

system states given the information available to the system. 

This can be accomplished using a recursive, three stage 

procedure comprising prediction, observation and update of 

the posterior. This recursive update rule, known as filtering 

for SLAM, is the basis for the majority of SLAM 

algorithms. 

Extended Kalman Filter (EKF) is the most well-known 

Gaussian filter for treating the SLAM problem, where the 

belief is represented by a Gaussian distribution. The Kalman 

Filter is a general statistical tool for the analysis of time-

varying physical systems in the presence of noise. Its main 

goal is the estimation of the current state of a dynamic 



system by using data provided by the sensor measurements. 

Whenever a landmark is observed by the on-board sensors 

of the robot, the system determines whether it has been 

already registered and updates the filter. In addition, when a 

part of the scene is revisited, all the gathered information 

from past observations is used by the system to reduce 

uncertainty in the whole mapping, strategy known as 

closing-the-loop. 

In EKF-based SLAM approaches, the environment is 

represented by a stochastic map , where is the 

estimated state vector (mean), containing the location of the 

vehicle and the n environment features, and is the 

estimated error covariance matrix, where all the correlations 

between the elements of the state vector are defined. All 

data is represented in the same reference system. The map 

is built incrementally, using the set of measurements zk 

obtained by the camera. For each new acquisition, data 

association process is carried out with the aim of detecting 

correspondences between the new acquired features and the 

previously perceived ones. 

 

 

 

 

The sub-matrices, , and are, respectively, the 

robot to robot, robot to feature and feature to feature 

covariances. The sub-matrices are the feature to feature 

cross-correlations. and  will change in dimension as 

features are added or delated from the map. 
 

The Extended Kalm Filter consists in two steps:  

a) prediction step, which estimates the system state 

according to the state transition function  and the 

covariance matrix  to reflect the increase in uncertainty in 

the state du to noise  (unmodelled aspects of the system) :  
 

 

(5) 

 (6) 

 

 where    

 (7) 

is the Jacobian of  with respect to the state vector  and  

is the process noise covariance. 

Considering a constant velocity model for the smooth 

camera motion: 

   (8) 

b) The Update step uses the current measurement to  

improve the estimated state, and therefor the uncertainty 

represented by  is reduced.  
 

              (9) 
 

    (10) 

 

Where                                           (11) 
 

     (12) 
 

       (13) 
 

 and  are block-diagonal matrices ( obtained empirically) 

defining the error covariance matrices characterizing the 

noise in the model and the observations, respectively. 

 is the Jacobian of the measurement model  with respect 

to the state vector. A measurement of feature  is not 

related to the measurement of any other feature so 
 

 (14) 

 

where  is the measurement model for the 'th feature. 

 

IV. FEATURE INITIALIZATION 
 

When a feature is first detected, measurement from a single 

camera position provides good information on its direction 

relative to the camera, but its depth is initially unknown.  

Since depth information is not provided, EKF can not be 

directly initialized, leading to a new challenge known as 

Bearing-Only SLAM. An early approach was proposed by 

Deans [13], who combined Kalman filter and bundle 

adjustment in filter initialization, obtaining accurate results 

at the expense of increasing filter complexity. In  [5], 

Davison uses for initialization an A4 piece of paper as a 

landmark to recover metric information of the scene. Then, 

whenever a scene feature is observed a set of depth 

hypotheses are made along its direction. In subsequent steps, 

the same feature is seen from different positions reducing 

the number of hypotheses and leading to an accurate 

landmark pose estimation. Besides, Solà et al. [14] proposed 

a 3D Bearing-Only SLAM algorithm based on EKF filters, 

in which each feature is represented by a sum of Gaussians. 

In our application, to estimate the 3D position of the 

detected features, we use an approach based on epipolar 

geometry. This geometry represents the geometric 

relationship between multiple viewpoints of a rigid body 

and it depends on the internal parameters and relative 

positions of the camera. The essence of the epipolar 

geometry is illustrated in figure 4 

 
 

Fig 4: Illustration of the epipolar geometry 



The fundamental matrix  (a  matrix of rank  ) 

encapsulates this intrinsic geometry. It describes the 

relationship between matching points: if a point  is imaged 

as  in the first view, and  in the second, then the image 

points must satisfy the relation . The fundamental 

matrix is independent of scene structure. However, it can be 

computed from correspondences of imaged scene points 

alone, without requiring knowledge of the cameras’ internal 

parameters or relative pose. Given a set of  pairs of image 

correspondences , we compute  and  

such the epipolar error is minimized  
 

 (15) 

 

For the minimization, we use the Random Sample 

Consensus (RANSAC) algorithm. 

The camera coordinate systems corresponding to tow views 

are related by a rotation matrix, , and a translation vector, 

:  
 

 (16) 

 

Taking the vector product with , followed by the scalar 

product with , we obtain:  

 

 (17) 

  

This can also be written as  
 

 (18) 
  

where  

 

 (19) 

 

is the essential matrix, and  denotes skew symmetric cross 

product matrix for   

 

 

 

The rotation  and translation  between the two camera 

frames are then calculated by singular value decomposition 

SVD of . 

Suppose that the SVD decomposition of  is 

. The factorization  corresponds to: 

 

  (20) 

Where  

 

       

and 

 

 

And then the camera projection are given by: 

- camera projection matrix for the first view

 

- camera projection matrix at the second view

 

 

Knowing the camera calibration matrix , we can calculate 

the essential matrix  as follows: 

 

 (20) 

 

The camera calibration matrix  encodes the transformation 

from image coordinates to pixel coordinates in the image 

plane. It depends on the so-called intrinsic parameters: focal 

distance  (in mm), principal point (or image centre) 

coordinates ,  (in pixel), width ( ) and height ( ) of 

the pixel footprint on the camera photosensor (in mm), and 

angle  between the axes (usually ). The ratio  is 

the aspect ratio (usually close to 1). 

 

 

 

Let  and  be the two corresponding points satisfaying the 

epipolar constraint . Given the camera matrices  

and , the depth of the 3D point corresponding to  and  

can be calculated by: 

 

 
(21) 

 

where e is the epipole at the first view. 

 

V. FEATURE MATCHING 

 

At step t, the onboard sensor obtains a set of measurements 

 (i = 1, ... ,m) of m environment features. Feature 

matching corresponds to data association, also known as the 

correspondence problem, which consists in determining the 

origin of each measurement, in terms of the map features , 

j = 1, . . . , n. The measurement  can be considered 

corresponding to the feature  if the Mahalanobis distance 

 satisfies: 

 

 (22) 

 

where the covariance  and the innovation  are given by 

equations (12) and (13), respectively. 

In our application, as we are using SIFT features, the 

matching between feature is checked using a product of the 

Mahalanobis distance between measurements and their 

predictions and the Euclidean distance between the 

descriptor vectors of the features. This will allow using the 

advantage of looking for feature matching based on the 

prediction of their position based on the system model and 

the advantage of the space-scale invariance parameters. 

 

 (23) 



where 

 

 

is the Euclidean distance between the discriptor vectors of 

the features. 

Additionally, corresponding features should satisfy the 

epipolar constraint, hence an image point  that 

corresponds to  is located on or near the epipolar line 

that is induced by . The distance of the image point  

from that epipolar line is computed as follows: 

 is the j component of the vector .  is the 

fundamental matrix which is computed based on the 

estimations from the Extended Kalman Filter.  

Therefore, our cost function for features matching is the sum 

of  and : 

 

 (24) 

 

VI. SLAM IN LARGE-SCALE AREAS 

 

The main open problem of the current state of the art SLAM 

approaches and particularly vision based approaches is 

mapping large-scale areas. Relevant shortcomings of this 

problem are, on the one hand, the computational burden, 

which limits the applicability of the EKF-based SLAM in 

large-scale real time applications and, on the other hand, the 

use of linearized solutions which compromises the 

consistency of the estimation process. The computational 

complexity of the EKF stems from the fact that covariance 

matrix  represents every pairwise correlation between the 

state variables. Incorporating an observation of a single 

landmark will necessarily have an effect on every other state 

variable. This make the EKF computationally infeasible for 

SLAM in large environment. 

Methods like Network Coupled Feature Maps [9], 

Sequential Map Joining [10], and the Constrained Local 

Submap Filter  (CRSF) [11], have been proposed to solve 

the problem of SLAM in large spaces by breaking the global 

map into submaps. This leads to a more sparse description 

of the correlations between map elements. When the robot 

moves out of one submap, it either creates a new submap or 

relocates itself in a previously defined submap. By limiting 

the size of the local map, this operation is constant time per 

step. Local maps are joined periodically into a global 

absolute map, in an O(N
2
) step. Each approach reduces the 

computational requirement of incorporating an observation 

to constant time. However, these computational gains come 

at the cost of slowing down the overall rate of convergence. 

The Constrained Relative Submap Filter [11] proposes to 

maintain the local map structure. Each map contains links to 

other neighboring maps, forming a tree structure (where 

loops cannot be represented). The method converges by 

revisiting the local maps and updating the links through 

correlations. Whereas in the hierarchical SLAM [12], links 

between local maps form an adjacency graph. This method 

allows to reduce the computational time and memory 

requirements and to obtain accurate metric maps of large 

environments in real time. 

To solve the problem of SLAM in large spaces, in our study, 

we propose a procedure to break the global map into 

submaps by building a global representation of the 

environment based on several size limited local maps built 

using the previously described approach. The global map is 

a set of robot positions where new local maps started (i.e. 

the base references of the local maps). The base frame for 

the global map is the robot position at instant t0.  

Each local map is built as follows: at a given instant tk, a 

new map is initialized using the current vehicle location, , 

as base reference Bk= , k=1, 2,... being the local map 

order. Then, the vehicle performs a limited motion acquiring 

sensor information about the Li neighboring environment 

features.  

The ' 'th local map is defined by: 

 

 

 

where  is the state vector in the base reference  of the 

 detected features and  is their covariance matrix 

estimated in . 

The decision to start building a new local map at an instant 

tk is based on two criteria: the number of features in the 

current local map and the scene cut detection result. The 

instant tk is called a key-instant. In our application we 

defined two thresholds for the number of features in the 

local maps: a lower Th
-
 and a higher Th

+
 thresholds. A key-

instant is selected if the number of features  nl
k
 in the current 

local map k is bigger then the lower threshold and a scene 

cut has been detected or the number of features has reached 

the higher threshold. This allows kipping reasonable 

dimensions of the local maps and avoids building too small 

maps. 

The global map is:  

 

 (25) 

 

where  are the robot coordinates in , where it decides to 

build the local map  at instant . 

 

 

 (26) 

 and . 

 

The transformation matrix  is obtained by successive 

transformations: 

 (27) 

 

where  is the transformation matrix 

corresponding to rotation  and translation  of frame  

regarding to frame : 

 

 (28) 

 

In this case, for feature matching at instant , the robot uses 

the local map with the closest base frame to its current 

location:  

 (29) 

where  is the robot position at instant  in . 



Fig5 and fig6 show respectively an example of the proposed 

SLAM process and the results of the ROBUDEM 

localization in a real environment. Black squares in figure 5, 

describes the positions where the algorithm started a new 

local map. The ellipses around the features on the original 

frame (fig 5) represent the estimated covariance, cyan for 

non matched feature and red for matched features  

 

 
 

Fig 5: example of SLAM process 

 

 
Fig 6: ROBUDEM localization in a real environment. 

 

Fig7 shows the error on the robot position. The results 

shows how precise is the proposed algorithm where the error 

is kept less than 1m. 

 

 
 

Fig 7: Estimated error on robot position 

VII. CONCLUSION 

 

In this paper, we presented an algorithm for robot 

localization using a SALM Approach combining data from 

different sensors: a monocular camera, GPS, INS, and 

wheels encoders. The proposed approach has been applied 

successfully for a real robot localization in the framework of 

an European project VIEW-FINDER 
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